QUANTITATIVE NON-TARGETED ANALYSIS

Anneli Kruve University of Tartu Stockholm University anneli.kruve@ut.ee

EURACHEM 2019 TARTU

Green tea is one of the most commonly consumed beverages worldwide and is claimed to possess numerous healthprotective qualities.

Metabolomic study of green tea

LC/HRMS

aims to correlate changes in the chemical profile of a sample with a corresponding shift in macroscopic phenotype

LC/ESI/HRMS

Non-targeted analysis

38 tea samples

Kellogg et al. DOI: 10.1021/acs.jnatprod.6b01156

19 identified compounds

- 2270 marker ions

QUALITATIVE

stop after identification

QUANTITATIVE

purchase or synthesize the standard substances

were available for 14 compounds

with calibration graph method

Quantification

Preliminary assignment

with non-targeted LC/HRMS

Standard substances

Quantification possible

Mixture of seven compounds at equal concentrations.

Climbing the way to quantitative non-targeted analysis

Anneli Kruve 21.05.2019

Ionization efficiency

for ESI source

Ionization efficiency **RELATIVE MEASUREMENTS**

Flow injections

Calibration graph

Kruve et al. DOI: 10.1021/ac404066v

Calculation

slope₁ $\rightarrow \log IE$ $log \frac{1}{slope_2}$

Ionization efficiency

IS AFFECTED BY

Compound structure

hydrophobicity, basicity/acidity

Eluent

organic modifier %, pH, additive type

Instrument

source design, mass analyzer

Matrix

ionization suppression/enhancement

Anneli Kruve 21.05.2019

Structure

Hydrophobicity affinity for the droplets surface

Acidity/Basicity

protonation/deprotonation in the solution

Interplay between properties

no single ESI mechanism

Kruve et al. DOI: 10.1021/ac404066v

Structure

Hydrophobicity affinity for the droplets surface

Acidity/Basicity

protonation/deprotonation in the solution

Interplay between properties

no single ESI mechanism

Kruve et al. DOI: 10.1021/ac404066v

Structure

Hydrophobicity affinity for the droplets surface

Acidity/Basicity

protonation/deprotonation in the solution

Interplay between properties

no single ESI mechanism

Kruve et al. DOI: 10.1021/ac404066v

Eluent

Organic modifier

higher organic modifier content increases ionization efficiency by >10x

рΗ

change in ionization efficiency >1000x

Liigand et al. DOI: 10.1007/\$13361-014-0969-X Liignad et al. DOI: 10.1007/\$13361-016-1563-1 Ojakivi et al. DOI: 10.1002/\$lct.201702269.

Additive type

same pH, different buffer: 20 to 50x different ionization efficiencies

Anneli Kruve 21.05.2019

DIFFERENT **INSTRUMENTS**

7 different instruments

- 5 vendors
- 4 countries

Liigand et al. DOI: 10.1007/\$13361-015-1219-6

IONIZATION **EFFICIENCY**

order of compounds is similar good correlation

Matrix effect in ESI

BIOLOGICAL SAMPLES

order of compounds is the same good correlation

Liignad et al. DOI: 10.1016/j.aca.2018.05.072

Modelling

bringing previous knowledge together

Modelling of ionization efficiency

TRAINING & VALIDATION

different machine learning approaches tested

Liignad et al. submitted for publication

Liignad et al. submitted for publication

ESI+

3139 data points 353 small molecules

106 eluent compositions

MeCN/MeOH 0 - 100%

pH = 2.0 - 10.7

Average prediction error Training set 1.9x Test set 3.0x

ESI-

1286 data points

101 small molecules

33 eluent compositions

MeCN/MeOH 0 – 100% pH = 2.0 – 10.7

Average prediction error

Training set 2.0x Test set 2.3x Liignad et al. submitted for publication

Concentrations

application for green tea

How to use it for quantification?

Step 1

predict ionization efficiencies

Step 2

transfer to specific setup

Liignad et al. submitted for publication

Step 3

calculate

Anneli Kruve 21.05.2019

(1) SMILES for identified
compounds
(2) 5-6 compounds with
known concentration
(3) gradient parameters
READY...SET...GO

How does it work in practice?

(1) SMILES for identified compounds (2) 5-6 compounds with known concentration (3) gradient parameters READY...SET...GO

LC/MS web-app

Download sample input file

Select file
A %

	Browse
	•
	٣
B %	
	Delete

(1) SMILES for identified compounds
(2) 5-6 compounds with known concentration
(3) gradient parameters READY...SET...GO

9														NV		<u>~</u> F	\sim	\sim	$\sim_{\mathcal{A}}$			
I	Ŀ	- ر - P	C . 1								s	ample - E	xcel						Ŧ			$\sim \times \sim$
ł	Fi	ile H	ome	Insert P	age La	yout	Form	nulas	Data	Review	Vi	iew (Q Tell me	what you war	nt to do				A	nneli Kruve	P4 St	nare
ľ	ع	• ×							~	0.00-					ETT.	F B	E Inse	ert 👻	Σ.	A- (
I			Calibri	*	11 -	AA	<i>t</i> –	= =	87 -	Ēť	Gener	ral	*	l∎ ≠			Del	ete v	<u> </u>	ZY >		
I	Pas	te 💉	BI	<u>u</u> - 🖽	- 👌	- <u>A</u>	• =	==	€≣ ₹	•	-	% ,	00. 0.→ 0.← 00.	Conditional	Format as	Cell	E For	mat +		Sort & Find	181	
I	- Tin	heard 5		Foot				Alia	nment	-		Number		Formatting	Fable *	Styles *	Col.	le.	~	Filter + Sele	ct •	
ł	Ciip	Logic 13		Font			121	Alig	nment	12		Number	13		Styles		Cei	15		cutting	1	~
	D1	4	* E	X V	f_x																	~
I					1	R			c	D		F	F	G	н	L T	1	1	ĸ	L I		MA
l	1	Compour	d SMILE	ES	R	etentio	ontin	Peak An	ea	concer	tratio	n n						-	N.	-		
l	2	CC1=C(N=	C(N=C1	OC(=0)N(C)C)N		1.771		 7.42E+08													
I	3	CN1C(=C(C(=N1)	CI)C(=0)OC	S(=0		4.982		1.01E+08													
I	4	CCOP(=S)	(OCC)SC	CN1C2=C(C=	=C(C		6.041		1.66E+07													
	5	COP(=O)(OC)OC1	L=CC=C(C=C	1)[N		3.492		6.16E+07													
	6	CCOP(=O)(OCC)O	P(=O)(OCC)00		3.171		1.25E+08													
	7	COP(=O)(N)SC				0.877		6.22E+06	3.55E	-06											
I	8	CCCCN(C	CCC)SN((C)C(=O)OC	1=C(7.622		2.88E+07	2.63E	-07											
	9	ccccc(cr	N1C=NC	=N1)(C2=C(C=C(5.263		3.03E+07	1.60E	-06											
	10	CCC1=CC=	=CC(=C1	N(COCC)C(=0)(5.371		9.36E+06	1.86E	-06						_					
	11	0=)202	V(C1=CC	C=CC=C1CO	C2=N		5.917		1.16E+08	1.29E	-06						_					
J	12																					
1	13				_						_											
ł	14										_ - -					_	_					
	15										-											
	17										-											
	12										-											
ł	19				-		_	1														
ł	20				-																	
l	21																					
I	22																					
I	23																					
	24																					
	25																					
	26																					
	27																					
	28																					
	29																					
	30																					
	31																					
	32																					
	-				0																	

(1) SMILES for identified compounds
(2) 5-6 compounds with known concentration
(3) gradient parameters READY...SET...GO

LC/IVIS	web-a	рр
---------	-------	----

Download sample input file

O Pleasenvait...

	Browse
	•
	•
B %	
5	Delete
100	Delete
100	Delete

5

Delete

(1) SMILES for identified compounds
(2) 5-6 compounds with known concentration
(3) gradient parameters READY...SET...GO

Quantem.co

Results

Download results

Substance

CC1=C(N=C(N=C1OC(=O)N(C)C)NC)C

CN1C(=C(C(=N1)Cl)C(=O)OC)S(=O)(=O)NC(=O)NC2=NC(=CC(=N2)OC)OC

CCOP(=S)(OCC)SCN1C2=C(C=C(C=C2)CI)OC1=O

COP(=O)(OC)OC1=CC=C(C=C1)[N+](=O)[O-]

CCOP(=O)(OCC)OP(=O)(OCC)OCC

COP(=O)(N)SC

CCCCN(CCCC)SN(C)C(=O)OC1=CC=CC2=C1OC(C2)(C)C

CCCCC(CN1C=NC=N1)(C2=C(C=C(C=C2)CI)CI)O

CCC1=CC=CC(=C1N(COCC)C(=O)CCI)C

 $\mathsf{COC}(=\mathsf{O})\mathsf{N}(\mathsf{C1}=\mathsf{CC}=\mathsf{CC}=\mathsf{C1}\mathsf{COC}2=\mathsf{NN}(\mathsf{C}=\mathsf{C2})\mathsf{C3}=\mathsf{CC}=\mathsf{C}(\mathsf{C}=\mathsf{C3})\mathsf{CI})\mathsf{OC}$

Concentration
4.39e-05
1.83e-05
2.64e-06
2.36e-05
1.7e-05
3.55e-06
2.63e-07
1.6e-06
1.86e-06
1.29e-06

Prediction for green tea

Measurements

UNCG (USA) in 2017

Calculations

UT (Estonia) in late 2018

Liignad et al. submitted for publication

10⁻⁹ 10⁻⁷

error was

Can the predicted concentrations reveal anything about different tea samples?

Indeed, we can identify the non-green tea samples!

Pesticides in cereals

More than 1000 pesticides and mycotoxins registered in EU.

Anneli Kruve 21.05.2019

Cereal samples

PESTICIDES AND MYCOTOXINS

35 compounds & 6 transformation compounds 3.6 nM to 0.35 mM oat, barley, rye, wheat, rice, maize

Cereal samples

PESTICIDES AND MYCOTOXINS

2233 data points average prediction error 5x.

Wang et al. submitted for publication

10⁻⁷

7 out of 10

prediction error <5x.

9 out of 10

prediction error <10x.

What can we see now?

Anneli Kruve 21.05.2019

What does the future hold for non-targeted analysis?

Quantitative results

Directly comparable data from different labs

Retrospective analysis

Anneli Kruve anneli.kruve@ut.ee Kruvelab.com