
Cheat sheet for MLR

Libraries that are useful this task

library(caret) #machine learinign workflow

library(leaps) #library for stepwise regression

library(MASS) #contains some important basic linear regression tools

library(caTools)

library(tidyverse) #helps us to write concise code

Importing the data

dataset <- read_delim('Cao2015_SI.csv',

 delim = ",", //check your system delimiter

 col_names = TRUE,

 trim_ws = TRUE)

Data purification

Are all parameters required (e.g. name, smiles)? Use

dplyr::select(… , … , …)

to select the parameters that are going to the model development or

dplyr::select(-c(… , … , …))

to remove variables that are not relevant.

Data pre-processing

#observe the correlation between variables

#NB! Remove predictable variable from the dataset before or rename

correlationMatrix <- cor(dataset)

find attributes that are highly corrected (ideally >0.75)

highlyCorrelated <- findCorrelation(correlationMatrix, cutoff=0.75)

dataset2 <- dataset2 %>%

 dplyr::select(-highlyCorrelated)

Building stepwise regression automatically

Fit the full model

full.model <- lm(RT ~., data = training_set)

Stepwise regression model

step.model <- stepAIC(full.model, direction = "both",

 trace = FALSE)

summary(…)

Preparing the training and test set with 80/20 ratio

set.seed(123)

Lets create the split parameter with values:

split <- sample.split(dataset$..., SplitRatio = …)

And now split the data to two sets: training and test and remove the split from the dataset at the

same time

training_set <- subset(dataset, split == TRUE)

test_set <- subset(dataset, split == FALSE)

Fitting Multiple Linear Regression to the Training set

regressor = lm(formula = RT ~ .,

 data = …)

#assessing the model

summary(regressor)

Use the regression to predict the retention times

training_set <- training_set %>%

 mutate(… = predict(regressor, newdata = …))

Visualising the fit

#lets have a look how did the prediction work out for training set

ggplot(data = …) +

 geom_point(mapping = aes(x = … , y = …))

Training with automated cross-validation from package caret

fitControl <- trainControl(

 method = "repeatedcv",

 number = …, //number of resampling iterations

 repeats = …) //the number of complete sets of folds to compute

regressor <- train(RT ~ ., data = dataset,

 method = "glmStepAIC",

 trControl = fitControl,

 verbose = FALSE)

