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number of people. Our goal is to perform market segmentation by identify-
ing subgroups of people who might be more receptive to a particular form
of advertising, or more likely to purchase a particular product. The task of
performing market segmentation amounts to clustering the people in the
data set.

Since clustering is popular in many fields, there exist a great number of
clustering methods. In this section we focus on perhaps the two best-known
clustering approaches: K-means clustering and hierarchical clustering. In

K-means

K-means clustering, we seek to partition the observations into a pre-specified clustering

number of clusters. On the other hand, in hierarchical clustering, we do
not know in advance how many clusters we want; in fact, we end up with
a tree-like visual representation of the observations, called a dendrogram,
that allows us to view at once the clusterings obtained for each possible
number of clusters, from 1 to n. There are advantages and disadvantages
to each of these clustering approaches, which we highlight in this chapter.

In general, we can cluster observations on the basis of the features in
order to identify subgroups among the observations, or we can cluster fea-
tures on the basis of the observations in order to discover subgroups among
the features. In what follows, for simplicity we will discuss clustering obser-
vations on the basis of the features, though the converse can be performed
by simply transposing the data matrix.

10.3.1 K-Means Clustering

K-means clustering is a simple and elegant approach for partitioning a
data set into K distinct, non-overlapping clusters. To perform K-means
clustering, we must first specify the desired number of clusters K; then the
K-means algorithm will assign each observation to exactly one of the K
clusters. Figure 10.5 shows the results obtained from performing K-means
clustering on a simulated example consisting of 150 observations in two
dimensions, using three different values of K.

The K-means clustering procedure results from a simple and intuitive
mathematical problem. We begin by defining some notation. Let C1, ..., Ck
denote sets containing the indices of the observations in each cluster. These
sets satisfy two properties:

1. C1UCyU...UCk = {1,...,n}. In other words, each observation
belongs to at least one of the K clusters.

2. Cx N Cyx = 0 for all k # k'. In other words, the clusters are non-
overlapping: no observation belongs to more than one cluster.

For instance, if the ith observation is in the kth cluster, then i € C). The
idea behind K-means clustering is that a good clustering is one for which the
within-cluster variation is as small as possible. The within-cluster variation
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FIGURE 10.5. A simulated data set with 150 observations in two-dimensional
space. Panels show the results of applying K-means clustering with different val-
ues of K, the number of clusters. The color of each observation indicates the clus-
ter to which it was assigned using the K-means clustering algorithm. Note that
there is no ordering of the clusters, so the cluster coloring is arbitrary. These
cluster labels were not used in clustering; instead, they are the outputs of the
clustering procedure.

for cluster Cf, is a measure W (C},) of the amount by which the observations
within a cluster differ from each other. Hence we want to solve the problem

K
IIélIllIIléZC {Z W(Cy) } (10.9)

In words, this formula says that we want to partition the observations into
K clusters such that the total within-cluster variation, summed over all K
clusters, is as small as possible.

Solving (10.9) seems like a reasonable idea, but in order to make it
actionable we need to define the within-cluster variation. There are many
possible ways to define this concept, but by far the most common choice
involves squared Fuclidean distance. That is, we define

W(Cy) = |C | > Z (zij — i), (10.10)
1,1’ €Cy j=1

where |Cj| denotes the number of observations in the kth cluster. In other
words, the within-cluster variation for the kth cluster is the sum of all of
the pairwise squared Euclidean distances between the observations in the
kth cluster, divided by the total number of observations in the kth cluster.
Combining (10.9) and (10.10) gives the optimization problem that defines
K-means clustering,

K
mlnlmlze ZC— Z Z (zij — xij)? 3. (10.11)
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Now, we would like to find an algorithm to solve (10.11)—that is, a
method to partition the observations into K clusters such that the objective
of (10.11) is minimized. This is in fact a very difficult problem to solve
precisely, since there are almost K™ ways to partition n observations into K
clusters. This is a huge number unless K and n are tiny! Fortunately, a very
simple algorithm can be shown to provide a local optimum—a pretty good
solution—to the K-means optimization problem (10.11). This approach is
laid out in Algorithm 10.1.

Algorithm 10.1 K-Means Clustering

1. Randomly assign a number, from 1 to K, to each of the observations.
These serve as initial cluster assignments for the observations.

2. ITterate until the cluster assignments stop changing;:

(a) For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for the
observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).

Algorithm 10.1 is guaranteed to decrease the value of the objective
(10.11) at each step. To understand why, the following identity is illu-
minating:

ﬁ Do Dy =2 Y (i — Ty, (10.12)

i1’ €C j=1 1€Cy j=1

where zp; = ﬁ Zieck x;; is the mean for feature j in cluster Cj.
In Step 2(a) the cluster means for each feature are the constants that
minimize the sum-of-squared deviations, and in Step 2(b), reallocating the
observations can only improve (10.12). This means that as the algorithm
is run, the clustering obtained will continually improve until the result no
longer changes; the objective of (10.11) will never increase. When the result
no longer changes, a local optimum has been reached. Figure 10.6 shows
the progression of the algorithm on the toy example from Figure 10.5.
K-means clustering derives its name from the fact that in Step 2(a), the
cluster centroids are computed as the mean of the observations assigned to
each cluster.

Because the K-means algorithm finds a local rather than a global opti-
mum, the results obtained will depend on the initial (random) cluster as-
signment of each observation in Step 1 of Algorithm 10.1. For this reason,
it is important to run the algorithm multiple times from different random
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FIGURE 10.6. The progress of the K-means algorithm on the example of Fig-
ure 10.5 with K=3. Top left: the observations are shown. Top center: in Step 1
of the algorithm, each observation is randomly assigned to a cluster. Top right:
in Step 2(a), the cluster centroids are computed. These are shown as large col-
ored disks. Initially the centroids are almost completely overlapping because the
initial cluster assignments were chosen at random. Bottom left: in Step 2(b),
each observation is assigned to the nearest centroid. Bottom center: Step 2(a) is
once again performed, leading to new cluster centroids. Bottom right: the results
obtained after ten iterations.

initial configurations. Then one selects the best solution, i.e. that for which
the objective (10.11) is smallest. Figure 10.7 shows the local optima ob-
tained by running K-means clustering six times using six different initial
cluster assignments, using the toy data from Figure 10.5. In this case, the
best clustering is the one with an objective value of 235.8.

As we have seen, to perform K-means clustering, we must decide how
many clusters we expect in the data. The problem of selecting K is far from
simple. This issue, along with other practical considerations that arise in
performing K-means clustering, is addressed in Section 10.3.3.
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FIGURE 10.7. K-means clustering performed six times on the data from Fig-
ure 10.5 with K = 3, each time with a different random assignment of the ob-
servations in Step 1 of the K-means algorithm. Above each plot is the value of
the objective (10.11). Three different local optima were obtained, one of which
resulted in a smaller value of the objective and provides better separation between
the clusters. Those labeled in red all achieved the same best solution, with an
objective value of 235.8.

10.3.2  Hierarchical Clustering

One potential disadvantage of K-means clustering is that it requires us to
pre-specify the number of clusters K. Hierarchical clustering is an alter-
native approach which does not require that we commit to a particular
choice of K. Hierarchical clustering has an added advantage over K-means
clustering in that it results in an attractive tree-based representation of the
observations, called a dendrogram.
In this section, we describe bottom-up or agglomerative clustering.

This is the most common type of hierarchical clustering, and refers to
the fact that a dendrogram (generally depicted as an upside-down tree; see

bottom-up

agglomerative

Now please visit:
https://www.naftaliharris.com/blog/visualizing-k-
means-clustering/

pick one of the examples and observe how are the centers

determined and new clusters assigned until no more
changes occur.
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