MULTILINEAR REGRESSION

WHY MULTIVARIATE MODELS?

CONCEPTS

INPUT Also predictors, independent variables, <u>features</u>

OUTPUT Also *response, dependent variable*

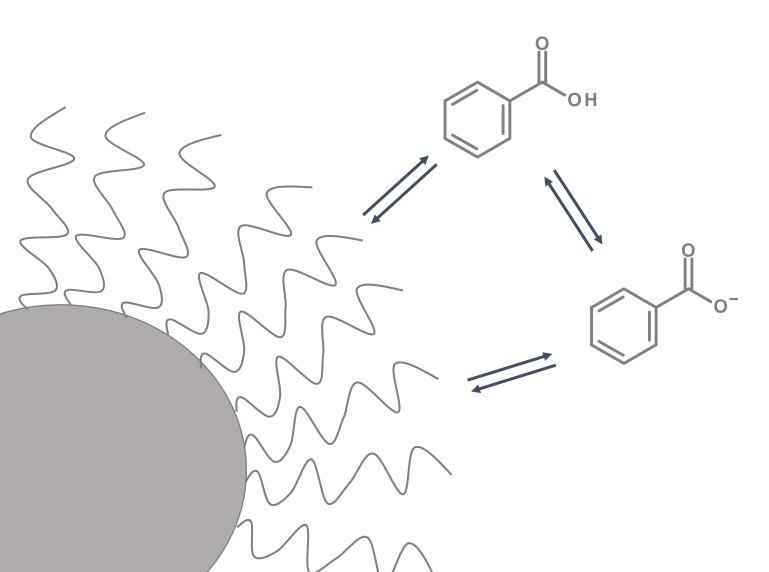
FUNCTIONAL FORM The conceptual relation between *input* and *output*

EXAMPLES OF MLR

IN CHEMISTRY

OUTPUT	INPUT		
Retention time	Analyte: log <i>P</i> , p <i>K</i> _a , polarizability, System: solvent, pH, gradient speed, column,		
Kaolinite content in paper	Full IR spectrum		
Response of the compound in MS	Analyte: log <i>P</i> , p <i>K</i> _a , polarizability, System: solvent, pH, buffer type,		
pH of water/organic mixture	Water phase pH, organic solvent, solvent ratio, buffer type,		
Water content in building materials	NIR spectrum		
Solubility	Analyte properties Solvent properties		
Collision cross-section (ion mobility)	#C, #H, volume, area,		

RETENTION BEHAVIOUR



IDEA

Suppose that we observe a quantitative response Y and p different predictors, $X_1, X_2, ..., X_p$.

We assume that there is **some relationship** between Y and X = $(X_1, X_2, ..., X_p)$, which can be written in the very general form:

 $Y = f(X) + \varepsilon$

f represents the systematic information that X provide about Y.

AIM

We can either aim at

• Making predictions about the future state

or

• Understanding the processes better

UNDERSTANDING

Which predictors are associated with the response? What is the relationship between the response and each predictor?

Simpler models are simpler to interpret

EXAMPLES

- Optimizing reaction yield
- Assessing quality of a product based on several parameters
- Design a drug

PREDICTING

Y = f(X),

We can use complicated models and should first and foremost care about prediction accuracy

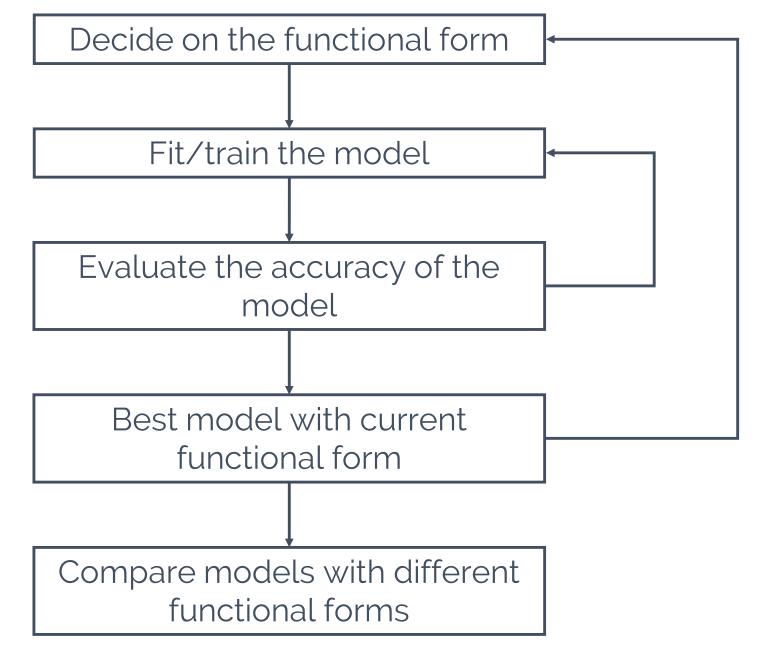
EXAMPLES

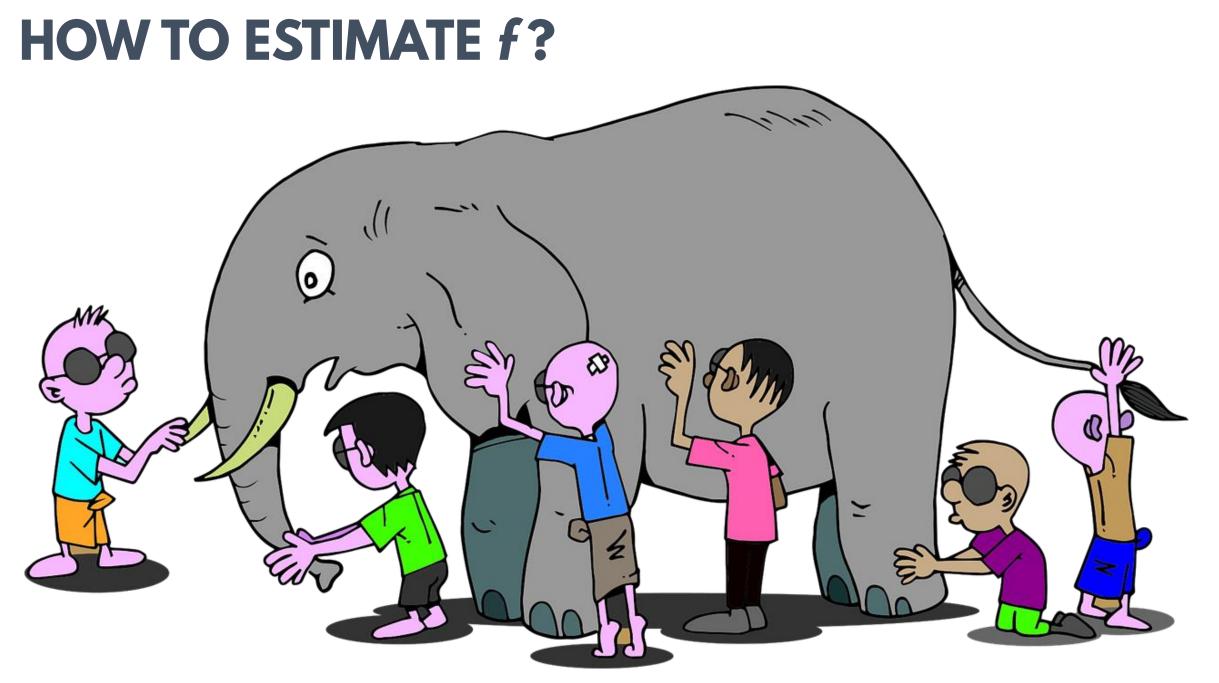
- Choosing the most potent drug out of candidates
- Predict retention time as conformation point in non-targeted screening
- Estimate the concentration of the compounds detected with LC/ESI/HRMS without standards
- Evaluate the fibre content of a textile

RESEARCH QUESTIONS

- 1. Is at least one of the predictors X_1 , X_2 , ..., X_p useful in predicting the response?
- 2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- 3. How well does the model fit the data?
- 4. Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

WORKFLOW

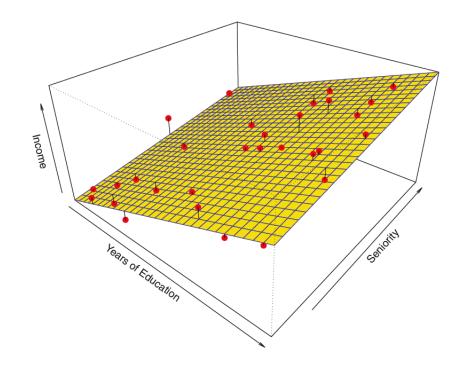




MODEL FLEXIBILITY

Parametric – model based approach Disadvantage

- will usually not match the true unknown form of *f* Advantage
- Easy to interpret
- Flexible models
- Advantage
- can fit many different possible functional forms for *f* Disadvantage
- complex models can lead to *overfitting*



NON-PARAMETRIC METHODS

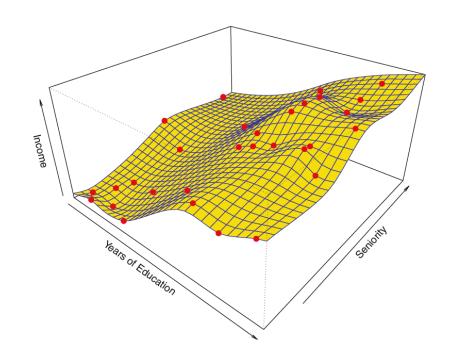
Do not make explicit assumptions about the functional form of f

More flexible if:

- More input parameters
- More complicated model type

Disadvantage:

- number of observations required
- are hard/impossible to interpret

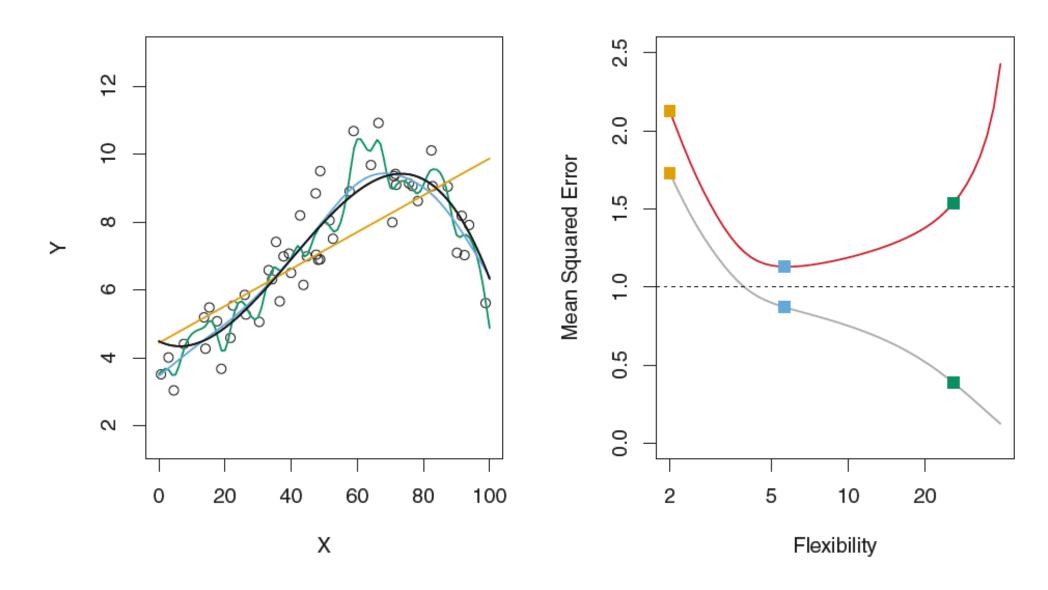


OVERFITTING

A developed model:

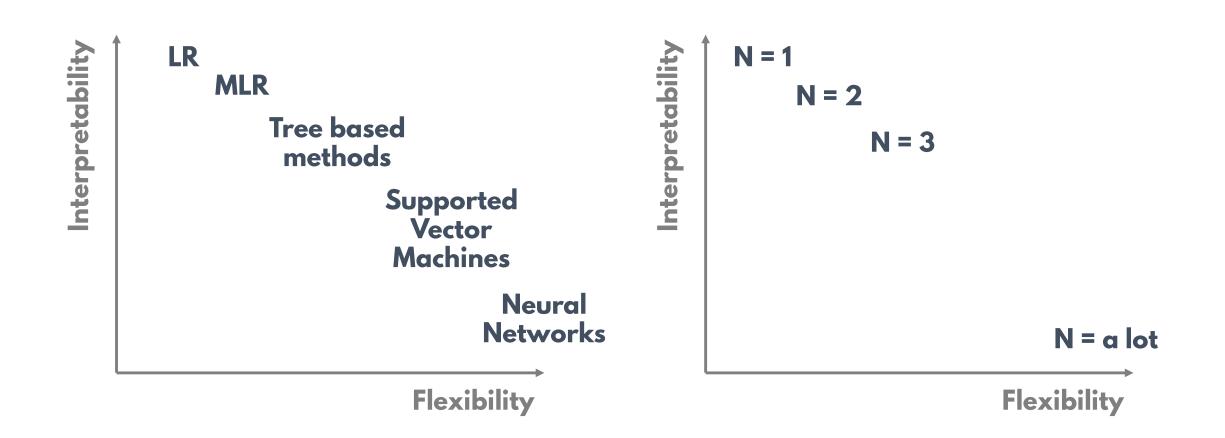
- has high prediction accuracy on data used for developing the model
- has poor prediction accuracy for data not "seen" by the model

EXAMPLE



WHY TO PREFER A MORE RESTRICTIVE METHOD?

INTERFERENCE & OWERFITTING



FITTING MLR MODEL

1. FUNCTION FORM

MAKE THE ASSUMPTION ABOUT FUNCTION FORM OR SHAPE

In case of MLR

 $f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p.$

E.g. In case of predicting retention time for LC

 $t_{\rm R}$ = a · log*P* + b · p $K_{\rm a}$

ERROR TYPES

reducible error and the irreducible error

 $\boldsymbol{\varepsilon}$ random error term catches all that we miss with the model

- The true relationship is probably not linear
- Missing input variables associated with output
- Measurement error

The total model prediction error consists of:

$$E(Y - \hat{Y})^2 = E[f(X) + \epsilon - \hat{f}(X)]^2$$

=
$$\underbrace{[f(X) - \hat{f}(X)]^2}_{\text{Reducible}} + \underbrace{\operatorname{Var}(\epsilon)}_{\text{Irreducible}},$$

Irreducible error provides an upper bound to the method accuracy. And it is unknown.

"Garbage in garbage out"

$$E(Y - \hat{Y})^2 = E[f(X) + \epsilon - \hat{f}(X)]^2$$

=
$$\underbrace{[f(X) - \hat{f}(X)]^2}_{\text{Reducible}} + \underbrace{\operatorname{Var}(\epsilon)}_{\text{Irreducible}},$$

You and your model do not know what is the proportion or size of the reducible and irreducible error.

Try to keep irreducible error as low as possible. *E.g.* find the best data.

BUT keep the data collection conditions close to the intended use.

DUMMY VARIABLES

Some variables are categorical

- Solvent (MeOH, MeCN, ...)
- Buffer type
- Column

Model can not accommodate with it.

Column type		C18	C8
C18		1	0
C18		1	0
C8		0	1
HILIC		0	0
HILIC		0	0

2. FIT OR TRAIN THE MODEL

Usually we train a number of models in parallel

Along the road we might figure out that additional input parameters are required

We need to estimate the parameters $\boldsymbol{\beta}_0$, $\boldsymbol{\beta}_1$, ..., $\boldsymbol{\beta}_p$

Ordinary least squares is commonly used

3. ASSESSING MODEL ACCURACY

What is the suitable model?

- No one model fits all solutions
- Keep as simple as possible

Are the input parameters sufficiently descriptive of the output parameter?

- Do we need to add anything?
- Are all of the input parameters required?

Parameters

- RMSE residual standard error
- R²
- F-statistic

ROOT MEAN SQUARE ERROR

$$RMSE = \sqrt{\frac{1}{n-2}RSS} = \sqrt{\frac{1}{n-2}\sum(y_i - \hat{y}_i)^2}$$

$$R^2 = \frac{\mathrm{TSS} - \mathrm{RSS}}{\mathrm{TSS}} = 1 - \frac{\mathrm{RSS}}{\mathrm{TSS}}$$

This is not a calibration graph! R² values can be much lower. In certain applications 0.5 or lower may still be useful!

F-statistic

Explained vs unexplained variation

$$F = \frac{(\text{TSS} - \text{RSS})/p}{\text{RSS}/(n - p - 1)},$$

Less complicated vs more complicated model

$$F = \frac{(\text{RSS}_0 - \text{RSS})/q}{\text{RSS}/(n - p - 1)}.$$

VARIABLE SELECTION

- 1. Test all possible combinations
- 2. Forward selection
- 3. Backward selection
- 4. Mixed selection

TESTING all possible combinations

- 1. All one parameter models, p models
- 2. All 2 parameter models, p (p-1) models

3.

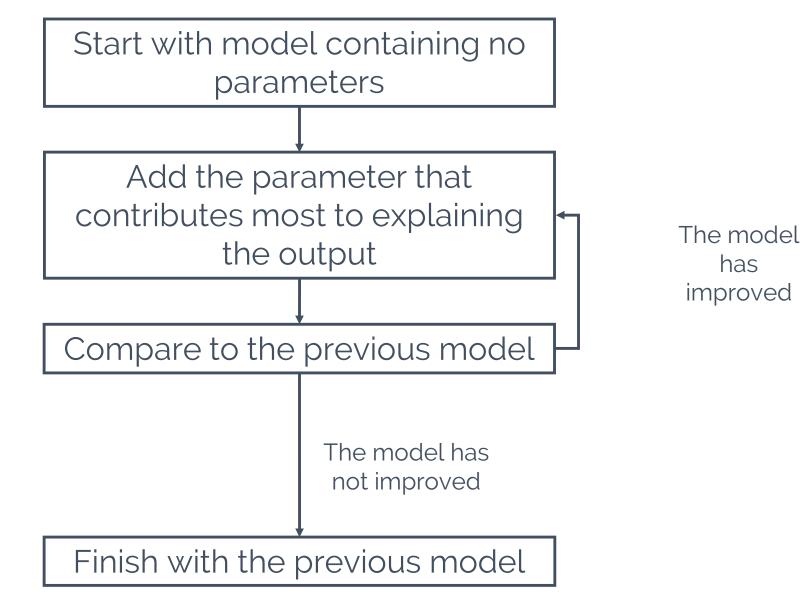
4. One model with all parameters

Altogether 2^p models

p = 30 this is 1 073 741 824 models

Computationally expensive and time-consuming!

FORWARD SELECTION



FORWARD SELECTION

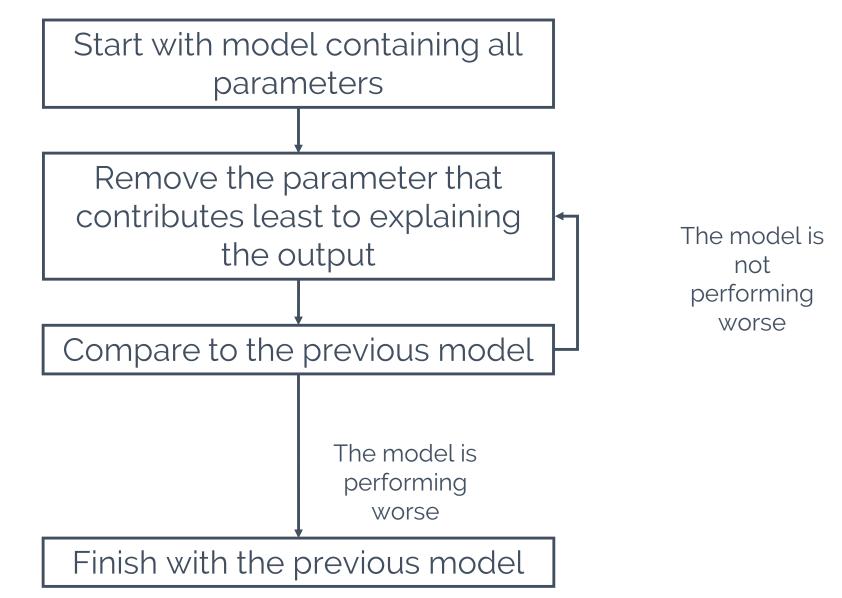
Advantages:

- Can be used if p > n
- Fast

Disadvantage:

• The model may be stuck with the parameters inserted early on

BACKWART SELECTION



BACKWART SELECTION

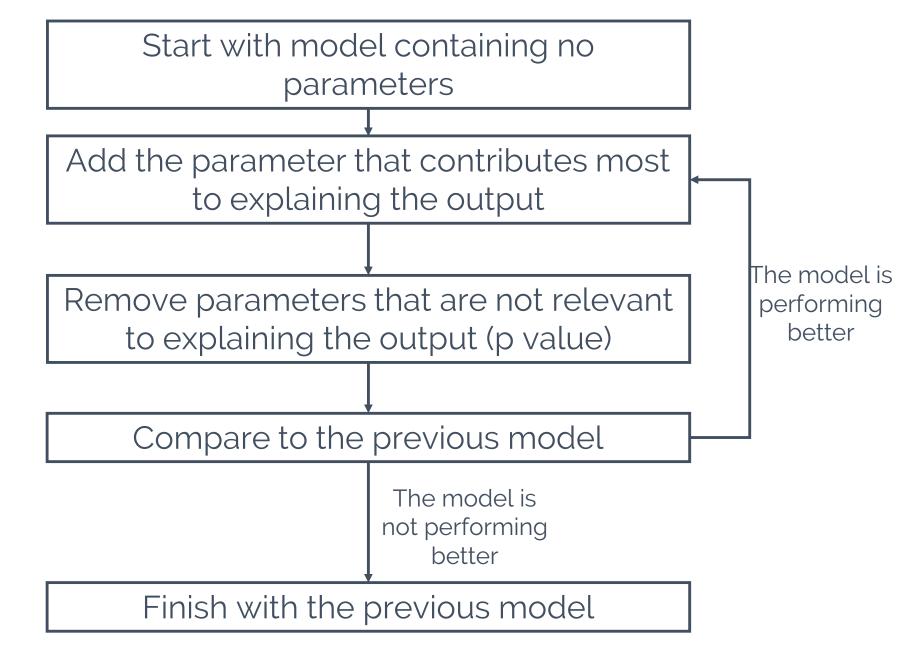
Advantages:

• Fast

Disadvantage:

• Can not be used if p > n

MIXED SELECTION



FINISH, RIGHT?

NO, NOT QUITE!

VALIDATION

WILL MY MODEL ALSO WORK ON NEW DATA?

RESAMPLING METHODS

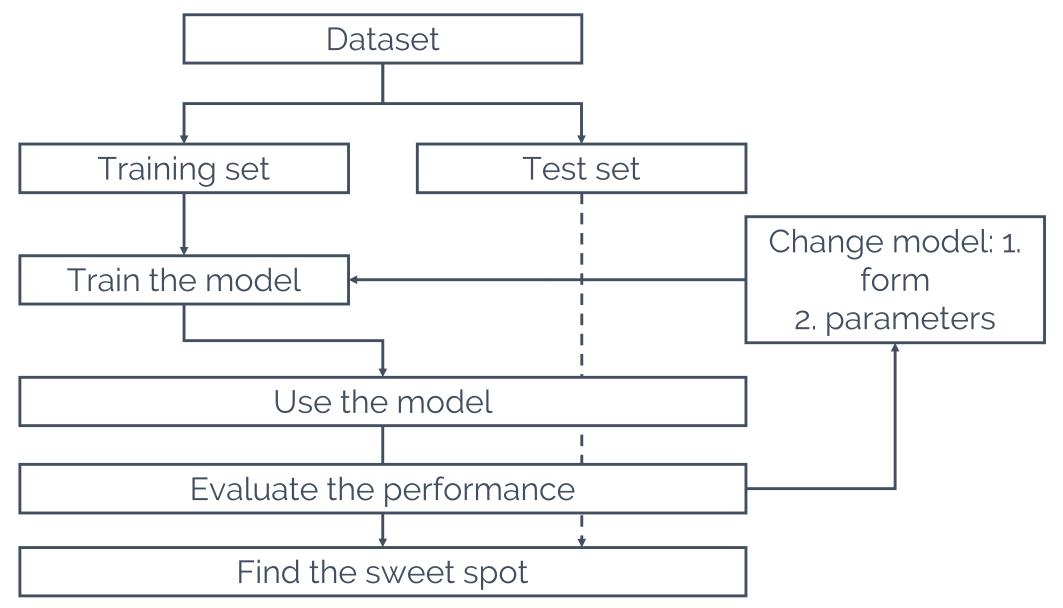
- 1. Cross-validation
 - 1. Leave-One-Out
 - 2. The Validation Set Approach
 - 3. k-fold Cross-Validation
- Based on the data you have at hand while developing the model
- 2. External validation
- Based on independent set of data (within application scope)
- Especially important in chemistry

TRAINING DATA ALWAYS LIE

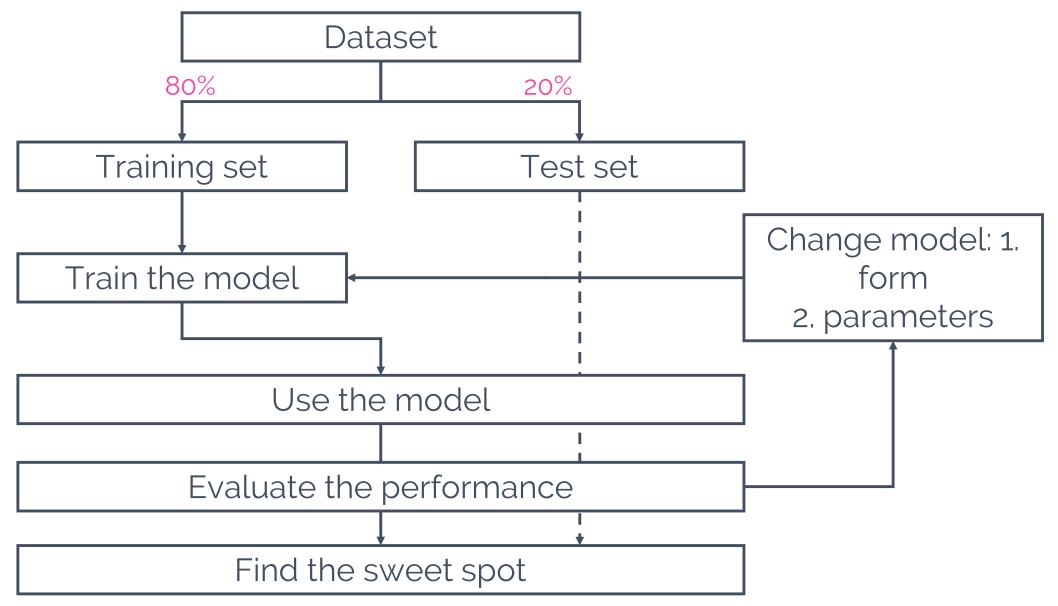


Model Complexity

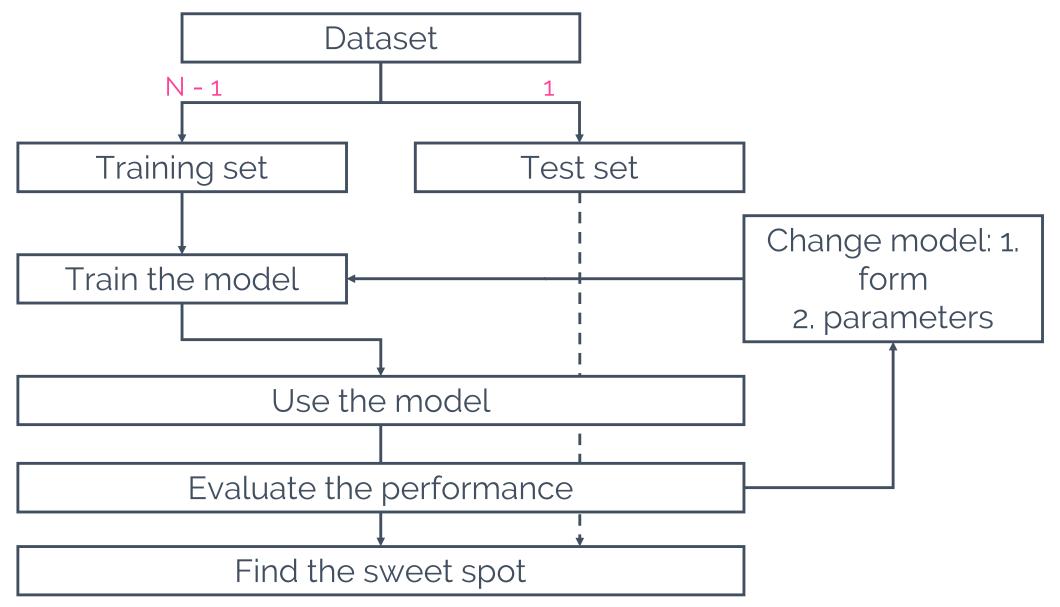
CROSS-VALIDATION



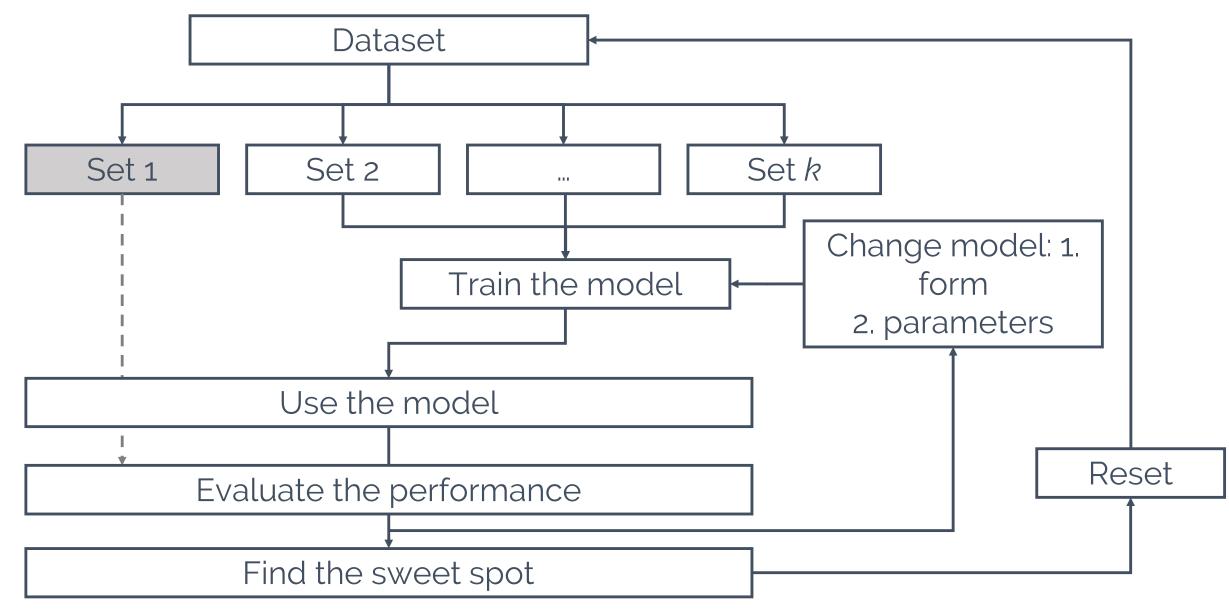
VALIDATION SET APPROACH



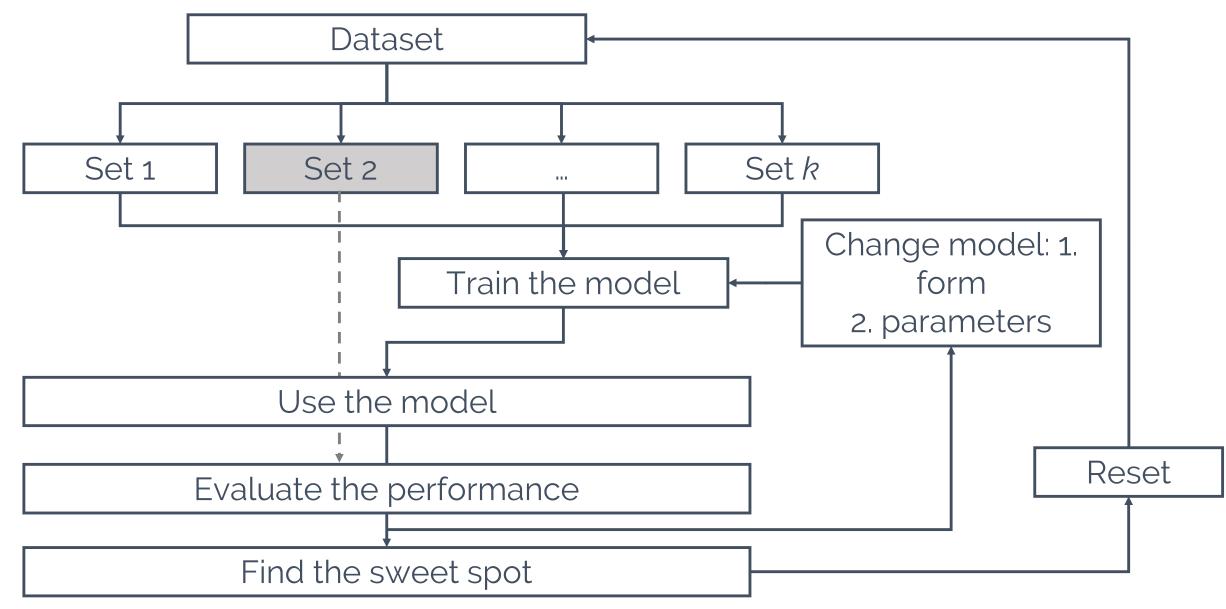
LEAVE-ONE-OUT



k-FOLD CROSS-VALIDATION



k-FOLD CROSS-VALIDATION

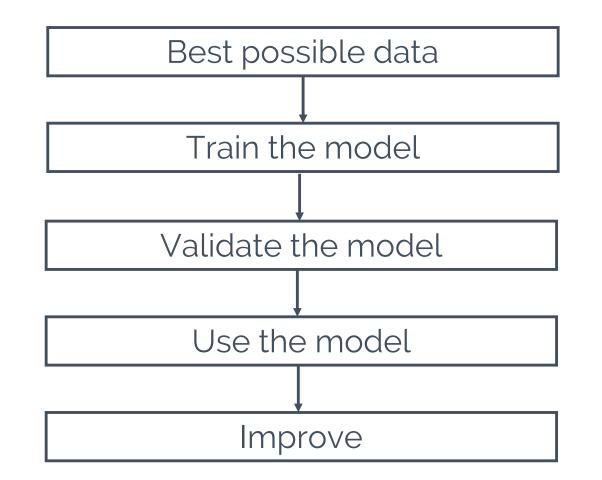


NB!

Random splitting only works if you have homogenous data Heterogenous data

- Data from several labs
- Several compounds measured under different conditions
- Time split data

MLR IN ACTION



AND NOW

....Interpretation

- It is very important not to trust models blindly
- ...and to understand if models represent the real chemistry
- ...and to learn from the models to make new chemistry