

Is the card red?

NoYes

Is the card spades?

NoYes

Is it a heart?

NoYes

heart diamond spades clubs

Is it a heart?

NoYes

NoYes

Is it a diamond?heart

NoYes

diamond Is it a spades?

Finding the most suitable questions to ask to classify the objects
fastest.
Also called: shallow decision trees

For this we need to find out as much information as possible with each
question.

Entropy is defined as

where
P(t = i) is the probability that randomly selecting an element t is the
type I
l is the number of different types (classes) of objects in the set

The entropy is directly linked to the heterogeneity of the set

𝐻 𝑡 = −

𝑖=1

𝑙

𝑃 𝑡 = 𝑖 × log2 𝑃 𝑡 = 𝑖

Compute the entropy of the original dataset with respect to target
feature

levels(t) is the set of levels in the domain of the target feature t

𝐻 𝑡, 𝐷 = −

𝑖=1

𝑙

𝑃 𝑡 = 𝑖 × log2 𝑃 𝑡 = 𝑖

1. Create the sets that result by partitioning the instances in the dataset
based on descriptive feature d.
2. Calculate the entropy of each of the sets.
3. Sum all of the entropy values.
4. Repeat steps 2 – 3 with the next feature.

𝑟𝑒𝑚 𝑡, 𝐷 =

𝑙 𝑖𝑛 𝑙𝑒𝑣𝑒𝑙𝑠(𝑑)

𝐷𝑑=𝑙
𝐷

× 𝐻 𝑡, 𝐷𝑑=𝑙

Subtract the remaining entropy value from the original entropy value
for each feature d.

The feature d allowing largest information gain is the one that should
be used for splitting the dataset.

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛 = 𝐻 𝑡, 𝐷 − 𝑟𝑒𝑚 𝑑,𝐷

Require: set of descriptive features d
Require: set of training instances D
if all the instances in D have the same target level C then

return a decision tree consisting of leaf node with label C
else if d is empty then

return a decision tree consisting of a leaf node with the label of
the majority target level in D

else if D is empty then
return a decision tree consisting of a leaf node with the label of
the majority target level of the dataset of the immediate parent
node

else ….

…
else

d [best] <- arg max InformationGain(d,D)
make a new node, Noded[best] and label it with d [best]
partition D using d[best]
remove d[best] from d
fore each partition Di of D do

grow a branch from Noded[best] to the decision tree created
by rerunning ID3 with D = Di

Minimal data preprocessing is needed
Tree generation includes feature selection
Usually performs very well

Low explainability
not good for understanding underlying processes

Prone to overfitting
rigorous training-testing scheme needed

Decision trees have a problem of overfitting
low bias but high variance

A method to overcome this is to train several decision trees and
average

Given a training set X = x1, ..., xn with classification Y = y1, ..., yn,
bagging repeatedly, B times, selects a random sample with
replacement of the training set and fit trees to these samples:

For b = 1, ..., B:
1. Sample, with replacement, n training examples from X, Y; call these
Xb, Yb.
2. Train a classification tree on Xb, Yb.
The data points not used for training of a particular tree can be used to
evaluate the performance

Often correlation of the trees in an ordinary bootstrap sample:
….if one or a few features are very strong predictors for the response
variable (target output), these features will be selected in many of the
B trees, causing them to become correlated

Feature bagging helps to overcome this
…at each candidate split in the learning process, a random subset of
the features is taken for testing

given training data set
select number of trees to build (ntrees)
for i = 1 to ntrees do

Generate a bootstrap sample of the original data
Grow a regression tree to the bootstrapped data
for each split do

select m variables at random from all p variables
pick the best variable/split-point among the m
split the node into two child nodes

end
use typical tree model stopping criteria

end

ntree: number of trees. We want enough trees to stabilize the error
but using too many trees is unnecessarily inefficient, especially when
using large data sets.

mtry: the number of variables to randomly sample as candidates at
each split.

mtry = p the model equates to bagging.
mtry = 1 the split variable is completely random, so all variables
get a chance but can lead to overly biased results. A common
suggestion is to start with 5 values evenly spaced across the
range from 2 to p.

sampsize: the number of samples to train on. The default value is
63.25% of the training set since this is the expected value of unique
observations in the bootstrap sample.
Lower sample sizes can reduce the training time but may introduce
more bias than necessary.
Increasing the sample size can increase performance but at the risk of
overfitting because it introduces more variance.
Typically, when tuning this parameter we stay near the 60-80% range.

nodesize: minimum number of samples within the terminal nodes.
Controls the complexity of the trees. Smaller node size allows for
deeper, more complex trees and smaller node results in shallower
trees.
Bias-variance tradeoff:
…deeper trees introduce more variance (risk of overfitting)
…shallower trees introduce more bias (risk of not fully capturing unique
patters and relationships in the data).
maxnodes: maximum number of terminal nodes.
…increase in nodes results in deeper and more complex trees
…less nodes result in shallower trees

Typically have very good performance
Remarkably good “out-of-the box” solution - very little tuning required
Built-in validation set - don’t need to sacrifice data for extra testing
….validation is still needed!
No pre-processing required
Robust to outliers

Can become slow on large data sets
Although accurate, often cannot compete with advanced boosting
algorithms
Less interpretable

