

Structure dependant protomer formation can aid identification of caffeine metabolites

IMS² experiments:

Indicative **patterns** in structure

- Methyl group present in R₂ and absent in R₁ position resulted **protomers**
- Methyl group absent in R₂ position resulted **tautomers**

Conclusions

- Structural parts present can be associated to protomer formation and help to identify unknown molecules with a higher confidence.
- Thermodynamically unstable protomers in both solution and gas-phase can still be present in ES produced gas-phase ions.
- Further investigation of structural indicators for protomer formation could be used in non-targeted analysis for additional confirmation of proposed structure.

Sepman H.^a, Tshepelevitsh, S.^b, Hupats, H.^c, Leito I.^b, Kruve, A.^a ^aDepartment of Materials and Environmental Chemistry, Stockholm University ^bInstitute of Chemistry, University of Tartu ^cInstitut für Chemie und Biochemie, Freie Universität Berlin

The funding has been generously provided by Swedish Research Council for Sustainable Development grant 2020-01511

Introduction

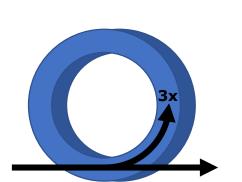
In positive electrospray ionization (ESI) mode protonated gas-phase molecules [M+H]+ are produced enabling mass spectrometric and ion mobility characterization. For polyfunctional molecules with multiple protonation sites, proton binding to different thermodynamically less stable sites has been observed. The impact of protomer formation to collision induced dissociation and ionization efficiency in ESI is yet unknown.

Methods

Substances:

- Caffeine (1,3,7-trimethylxanthine)
- Theophylline (1,3-dimethylxanthine)
- Paraxanthine (1,7-dimethylxanthine)
- Theobromine (3,7-dimethylxanthine)
- 1-methylxanthine
- 3-methylxanthine
- 7-methylxanthine
- XanthineHypoxanthine

Cyclic IM-MS


- Solvent effect on arrival time distributions (ATDs) and fragmentational behavior
- Two-dimentional IM experiments

Computational

Gibbs free energies for proposed protonated isomeric structures

SIRIUS software

 identification and characterization based on MS/MS spectra

Protomer formation can aid

structural identification of

caffeine metabolites

Cyclic Ion Mobility Spectrometer

Sepman H.^a, Tshepelevitsh, S.^b, Hupats, H.^c, Leito I.^b, Kruve, A.^a

^cInstitut für Chemie und Biochemie, Freie Universität Berlin

^bInstitute of Chemistry, University of Tartu

^aDepartment of Materials and Environmental Chemistry, Stockholm University

Paraxanthine

64

Drift time (ms)

Theobromine

Drift time (ms)

60

65

ATDs

Results

High- and low-mobility species observed for five compounds

- Paraxanthine, 1-methylxanthine and 7methylxanthine – no solvent effect
- Theobromine and 3-methylxanthine strong solvent effect

CID experiments and computations:

- Theobromine and 3-methylxanthine different fragmentation patterns of separated species
- [M+H-H2O]+ was dominating fragment for high-mobility species indicating Oprotonation
- No differences in MS/MS spectra of other compounds
- paraxanthine, 1-methylxanthine and 7methylxanthine – separation of tautomers
- Confirmed with computations and IMS2
- Based on computations, N-protonation to imidazole nitrogen (N-5) is suggested for all investigated compounds in both solution and gas-phase.

Indicative **patterns** in structure:

- Methyl group absent in N-3 position resulted tautomers
- methyl group present in N-3 and absent in N-1 position resulted protomers

SIRIUS identification:

- Molecular formula identified with high confidence
- Correct isomer was identified but with very low confidence score

Discussion

- Structural parts present can be associated to protomer formation and help to identify unknown molecules with a higher confidence.
- Thermodynamically unstable protomers in both solution and gas-phase can still be present in ES produced ions.
- Further investigation of structural indicators for protomer formation could be used in nontargeted analysis for additional confirmation of proposed structure.

The funding has been generously provided by Swedish Research Council for Sustainable Development grant 2020-01511