

Selecting mobile phase and column for non-targeted LC/ESI/HRMS analysis

Amina Souihi amina.souihi@mmk.su.se

Water sample

Water sample

Non-targeted LC/ESI/HRMS

HRMS

Non-targeted LC/ESI/HRMS

Water sample

Non-targeted LC/ESI/HRMS

Column? Organic modifier?

Column? Organic modifier? pH?

Column? Organic modifier? pH? Additive?

NORMAN compounds in MassBank(S1)

(1295 compounds in positive ESI)

1218 PaDEL descriptors + logP + number of acidic and basic functional groups (rcdk)

NORMAN compounds in MassBank(S1)

(1295 compounds in positive ESI)

1218 PaDEL descriptors + logP + number of acidic and basic functional groups (rcdk)

Hierarchical clustering

NORMAN compounds in MassBank(S1)

(1295 compounds in positive ESI)

1218 PaDEL descriptors + logP + number of acidic and basic functional groups (rcdk)

Hierarchical clustering

102 Selected compounds

Water phases:

Water phases:

~2.1 0.1% TFA 0.1% Formic acid 0.1% Acetic acid рН↓

Water phases:

~**2.1** 0.1% TFA **~2.7** 0.1% Formic acid **~2.9** 0.1% Acetic acid рН↓

Water phases:

~**2.1** 0.1% TFA

~2.7 0.1% Formic acid

0.1% Acetic acid

3.2 5 mM Ammonium formate

3.5 5 mM Ammonium acetate

Acetonitrile Methanol Columns: Biphenyl

Organic modifiers:

C18 reversed phase Mixed mode HILIC

рН↓

Water phases:

~**2.1** 0.1% TFA **~2.7** 0.1% Formic acid ~2.9 0.1% Acetic acid

рН↓

3.2 5 mM Ammonium formate

3.5 5 mM Ammonium acetate

рН↓

Water phases: Organic modifiers: Acetonitrile **~2.1** 0.1% TFA Methanol **~2.7** 0.1% Formic acid ~2.9 0.1% Acetic acid **3.2** 5 mM Ammonium formate **3.5** 5 mM Ammonium acetate 5.0 5 mM Ammonium formate/acetate Columns: C18 reversed phase Mixed mode Biphenyl HILIC

Classification of compounds

Classification of compounds

Neutral

Triphenylphosphate

Classification of compounds

Neutral

Acids and bases

Triphenylphosphate

Creatinine

Classification of compounds

Neutral

Acids and bases

Weak acids

Triphenylphosphate

Creatinine

Propylthiouracil

Classification of compounds

Neutral

Acids and bases

Weak acids

Weak bases

Triphenylphosphate

Creatinine

Propylthiouracil

Flecainide

Comparison of response factor

Comparison of response factor

Response factor (RF) = **Peak area / Concentration**

Comparison of response factor

Response factor (RF) = **Peak area / Concentration**

Column

Neutral compounds

Column

Compounds with acidic and basic groups are highly ionizable

Column

Higher RF-s in HILIC for some weak bases

Column

Effect of column is not statistically significant in this case

Organic modifier

Organic modifier

The effect of organic modifier is not statistically significant

рΗ

рΗ

pH has significant effect on low ionizable compounds :

рΗ

pH has significant effect on low ionizable compounds :

Weak acids

рΗ

pH has significant effect on low ionizable compounds :

Weak acids

Weak bases

рΗ

pH has significant effect on low ionizable compounds :

Weak acids

Weak bases

Neutral compounds

рΗ

pH has significant effect on low ionizable compounds :

Weak acids

Weak bases

Neutral compounds

рΗ

pH has significant effect on low ionizable compounds :

Weak acids

Weak bases

Neutral compounds

The effect of pH is statistically significant

Additive

Additive

Effect of additive is not significant in the same pH

Wastewater samples from Henriksdal wastewater treatment plant

Wastewater samples from Henriksdal wastewater treatment plant

Wastewater samples from Henriksdal wastewater treatment plant

5 mM ammonium fluoride yielded the highest number of triggered MS²

0.1% Ammonia

0.1% Formic acid

5 mM Ammonium fluoride

Amina Souihi

Number of spiked compounds within the SIRIUS+CSI:FingerID tentative structures

Dührkop et al. (2019)

Amina Souihi

Number of spiked compounds within the SIRIUS+CSI:FingerID tentative structures

Dührkop et al. (2019)

Amina Souihi

Influent wastewater – Intensity from full scan

Influent wastewater - Intensity

Influent wastewater - Intensity

Influent wastewater - Intensity

5 mM ammonium fluoride yielded higher peak areas

Influent wastewater - Intensity of MS² triggered

Influent wastewater - Intensity of MS² triggered

Influent wastewater - Intensity of MS² triggered

Influent wastewater - Intensity of MS² triggered

5 mM ammonium fluoride yielded the highest number of peaks with MS2 triggered

CONCLUSIONS

pH has a significant effect on the response factors of low ionizable compounds

Acidic conditions improved the response factors of weak bases and acids

Ammonium fluoride showed the highest number of MS² triggered and higher median peak areas

ACKNOWLEDGMENT

Kruvelab.com

Department of Materials and Environmental Chemistry (MMK) at Stockholm University

Anneli Kruve

Jonathan Martin

Malte Posselt

Kruvelab group

Funding: MSB 2021-11181