Can active learning improve the performance of computational mass spectrometry?

Wei-Chieh Wang

Wei-chieh.wang@mmk.su.se

Kruve lab

Active learning workflow

Active learning workflow

Active learning workflow

Cluster and uncertainty

Dense clusters

Sparse clusters

Density \leq Mean(Density)

Density > Mean(Density)

Representative

Informative

Reducing the density threshold after each iteration

Reducing the density threshold after each iteration

Ionization efficiency prediction model

100 known compounds, 400 new suspect compounds

Obtain 15 new compounds in each iteration

Implement 8 iterations

[•] Present chemical space • Target chemical space

Environmental contaminant • Natural product • PCB • PFAS

PC2 (7.88%)

Thanks for listening. Let's make our ML models powerful by exploring new chemical space!

- Acknowledgment
- Anneli Kruve, Meelis Kull
- Helen Sepman, Caroline Huber, Nahid Amini,
- Jaanus Liigand, Sara Khabazbashi
- **Kruvelab members**

Wei-Chieh Wang

wei-chieh.wang@mmk.su.se

The project is supported by the Swedish Research Council.