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BACKGROUND

We investigated whether these

features could be used to predict

the biochemical activity of

chemicals to flag those warranting

further testing due to potential

harmful effects.

1 in 6 premature deaths worldwide

is reported to be caused by pollution.

Nontarget LC/ESI/HRMS enables the

simultaneous detection of numerous chemicals,

but their identification remains limited (<5%),

leaving gaps in toxicity assessment.

The molecule's toxicity is associated with specific

structural patterns,  which can be extracted as

molecular fingerprint features from MS  spectra using

SIRIUS+CSI:FingerID.
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 = 1 - structural element present; 
 = 0 - structural element missing
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Depending on the bioassay, the lowest FPR         TPR = 0.9

ranged from 0.251 (sr.mmp) to 0.824 (nr.ar), consistent

with the trends observed in the Tox21 Data Challenge,

implying a potential reduction

of up to 75% in the post-processing 

workload for nontarget 

HRMS.
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aiming for high recall todetect the majority ofactive chemicals whileminimizing the workloadassociated withmisclassifiedones

TPR = 0.9
FPR

ACKNOWLEDGEMENT

This research received partial

funding from the Estonian

Research Council grant PRG1604

and the Swedish Research

Council grant 2022-01353, with

additional support from the Carl

Trygger Foundation project

22:2336.

IMPLEMENTATION
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Monte Carlo sampling was employed to mitigate

discrepancies arising from using probabilistic 

Depending on the bioassay, compared to the naive 0.5 threshold

approach, up to 20% of chemicals exhibited varying activity

predictions.
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FIELD OF APPLICATION

TCDD

Under 
real-world
screening

conditions, the

model predicting

nr.ahr successfully

flagged the TCDD

molecule, a known

aryl hydrocarbon

receptor agonist.

rapid

cost-
effective

no animal
testing
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INTERPRETABILITY

Models are able to pinpoint structural
patterns linked to the modes of actionof active chemicals.
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SHAP ANALYSIS OF THE nr.ahr MODEL


