MS2Tox: Discovering Endocrine Stockholm University Yvonne Kreutzer^a, Ida Rahu^b, Ulf Norinder^{c,d}, Anneli Kruve^{a,b}

^aDepartment of Chemistry, Stockholm University, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden, ^bDepartment of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden, ^cDepartment of Computer and Systems Sciences, Stockholm University, P.O.Box 1073, SE-164 25 Kista, Sweden, ^dMTM Research Centre, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden

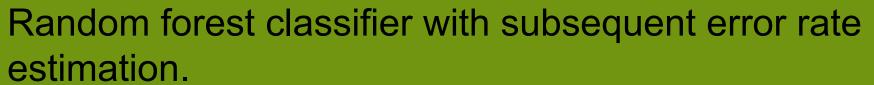
1 Background and Aim

Discovering endocrine disruptors (EDs) in complex mixtures is challenging as <10% of the chemicals are structurally annotated[1].

Machine learning models, from the MS2Tox toolbox, can predict toxicity from MS² spectra[2,3] and Molecular networks aid in annotating unknown transformation products in wastewater[4].

This study assesses molecular networks for pinpointing EDs from mass spectrometric data. Furthermore, it is compared with existing MS2Tox and newly trained conformal predictions approach.

LC/HRMS


2 Materials and Methods

? ? ? ?)

MS² spectra Potential aryl hydrocarbon receptor (AhR) agonist? Labelling of MS² spectra with 3 different approaches prior to identification

Conformal Predictions (MS² similarity based)

?

Training Set

ESI(+)/HRMS spectra from MassBank, MoNA, GNPS, NIST23 of 4274 unique chemicals with available endpoint information from Tox21 Data Challenge. Test Set

Comparison of approaches based on common test set, 861 compounds. Approaches are compared on false positive rate (FPR) at 50% and 90% recall.

Wastewater samples

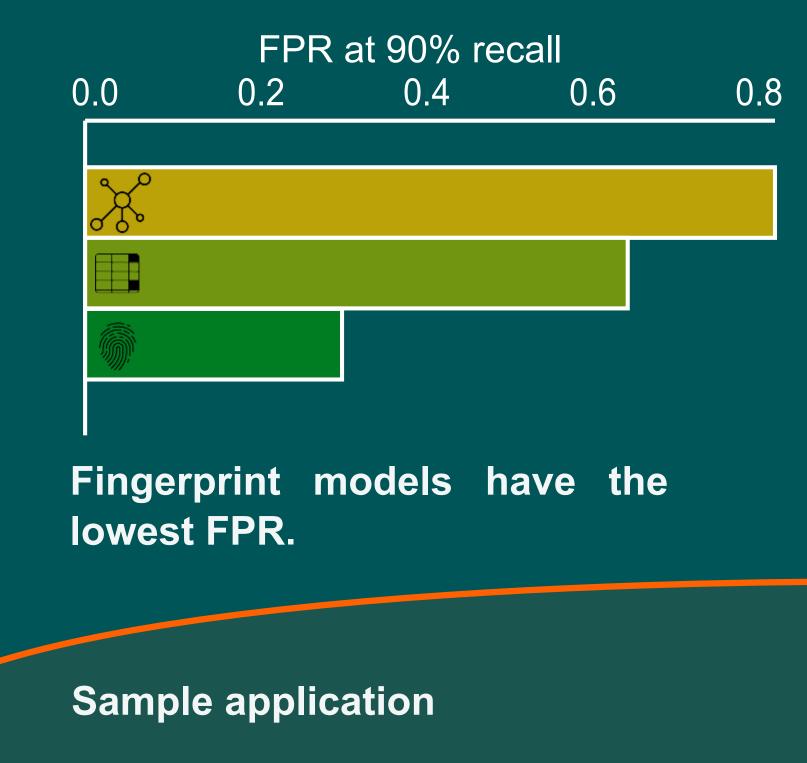
Influent and effluent samples measured with LC/ESI(+)/ HRMS Orbitrap.

Molecular Networks (MS² similarity based)

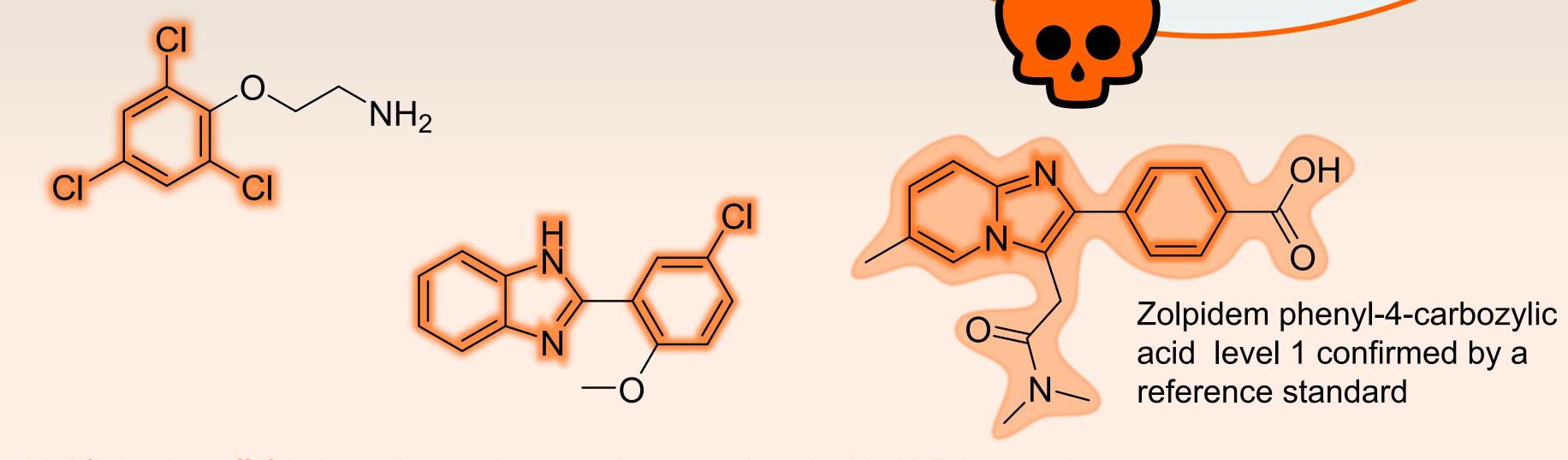
Nodes are connected based on MS2DeepScore, indicating MS² spectral similarity. The propability of an LC/ESI(+)/HRMS feature being active is calculated through its active neighboring nodes. A feature was classified as active if its probability exceeded a threshold that guaranteed recall of 50% or 90%.

MS2Tox

(Fingerprint based)


SIRIUS+CSI:FingerID (v5.8.6) fingerprints used to train a MS2Tox Extreme Gradient Boosting (XGBoost) Classifier.

Unknown LC/ESI(+)HRMS features labelled as potentially posing endocrine-disrupting activity by all approaches are further investigated.


Structural candidates are obtained through library matching and SIRIUS+CSI:FingerID.

BResults and Discussion

Test set results on AhR endpoint

Structural candidates of labelled features contain scaffolds related to AhR

interaction.

We recommend selecting methods such as MS2Tox models, trained to associate specific spectral or structural features with the bioactivity, over approaches that rely on general spectral/structural similarity for feature prioritization in non-target screening workflows.

highlighed scaffolds have been shown to be associated with AhR interaction.

[1] Papazian, S.; et al. Commun. Earth Environ. 2022, 3 (1), 1–14. 7 [2] Rahu, I.; et.al. J. Chem. Inf. Model. 2024, 64 (8), 3093–3104. [3] Peets, P.; et al. Environ. Sci. Technol. 2022, 56 (22), 15508–15517. [4] Oberleitner, D.; et al. Anal. Bioanal. Chem. 2021, 413 (21), 5291–5300.

Contact: **Yvonne Kreutzer** yvonne.kreutzer@su.se