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Candidate validation
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Prioritization
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Machine learning (ML) models
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SUMMARY Uncertainty in CCS predictions from state-of-the-art machine  -proaches for handling out-
leaming models will be quantified using conformal predictive systems. A trained on the METLIN-
custom heuristic is applied 1o classify chemicals of interest based on the  increasingly challenging festing scenarios: (1) 5% cross-validation, (2)
predicted CCS into quantile-based intervals, forming uncertainty classes  testing on external datasets, and (3) deployment on sample messurements
from the parsitioning of training residuals. The study will also explore sp-

distribution applications. Models will be
S dataset and evaluated under three

* Model-based uncertainty
* Model prediction errors (RMSE)

10 roprioritize candidate structures in noo-target analysis workflows.
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State-of-the-art machine leaning models for CCS prediction
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CONFORMAL PREDICTIVE SYSTEMS 1o

typically provide only point estimates, lacking uncertainty information'"-*

In non-target analysis, CCS-based candidte structure reprioritization is -
often performed on the absolute difference between predicted and @ e
experimental CCS values —an appeoach that ignores model confidence
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f©) evaluate wility for candidate structure.
’ [ Standard benchmarking metrics fail to captuse the probabilistic nature. reprioritization in non-target analysi

MATERIALS & METHODS under uncertainty guasantees.

B METLIN-CCS” for model training,

[ Conformal predictive systems for uncertainty quantification:

* Compound-based uncertainty :
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directly assign uncertainty classes

models and LinMZ as baseline.

based on its point estimates, b ez )

=1 - confidence
and b is the standard normal CDF

Evaluation: 5x5 cross-validation and statisti

analysis based on repeated measures ANOVA + Tukey HSD'!
o

Probabilistic outputs enable the use of more informative performance metrics, such as the Continuous Ranked Probability Score (CRPS),
which quantifies the distance between the empirical distribution and that of an ideal predictive model

RESULTS FUTURE WORK
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0 Strategies for handling out-of- Removal efficiency vs. recall curves will
validation and
distribution (OOD) instances will

be generated for spiked water samples by
statistical analysis
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ML-supported prioritization

Number of true positive
Numbre of the LC/HRMS features

Accuracy =

Number of the eliminated candidates

Efficiency =

Number of the total candidates
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Annotation performance from SIRIUS

Obtaining candidate Structural Candidates Correct compounds
MS2 spectra : :
194 lists from SIRIUS 23287 predicted
168 -> 2000 (top20) 90
100 100
80
75 75
I= I=
3 50 3 50
O o
25 25
5 4 1 7 : 2
0 [ e 0 L
1 2 3 4 1 2-10 11-20 >20
Formula Rank Structure Rank
12/05/2025 Wei-Chieh (Harry) Wang 10

Dihrkop, K., Fleischauer, M., Ludwig, M. et al. Nat Methods 16, 299-302 (2019).



Results for prioritization

* RT prediction: 95% recall
* Efficiency: 84.02% 1-00 ‘"""‘"*'
e Accuracy: 13.64% "
0.75 b,
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 Efficiency: 99.55% 0.00 0.25 0.50 0.75 ‘1.00
Recall

* Accuracy: 5.36 %



Current challenges for combining predictions
from various ML models

Target set 0~

 Different application domains
* The model was trained in different chemical spaces. o

ﬁ.
Training set
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* No compound-based uncertainty available



Conclusions & Future perspectives

* A strict combination of machine learning models led to an undesired
removal of true positives.

* Incorporate additional machine learning prediction models.
e Retrain models using data from the same chemical space.

e Estimate compound-based uncertainty using a conformal prediction
system.
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