MultiConditionRT: Predicting liquid chromatography retention time for emerging contaminants for a wide range of eluent compositions and stationary phases
Amina Souihi, Miklos Mohai, Emma Palm Louise Malm, Anneli Kruve
Journal of Chromatography A 2022
DOI: 10.1016/j.chroma.2022.462867
Structural elucidation of compounds detected with liquid chromatography coupled to high resolution mass spectrometry is a challenging and time-consuming step in the workflow of non-targeted analysis and often requires manual validation of the results. Retention time, alongside exact mass, isotope pattern, fragmentation spectra, and collision cross-section, is valuable information for ruling out unlikely structures and increasing the confidence in others. Different approaches to predict retention times have been used previously for reversed phase chromatography and hydrophilic interaction liquid chromatography (HILIC), but application is limited to a small set of mobile phases and gradient profiles. Here, we expand the toolbox available for retention time predictions by developing a random forest regression model for predicting retention times for four column types and twenty mobile phase systems. MultiConditionRT was built using a dataset containing 78 compounds analyzed with C18 reversed phase, mixed mode, HILIC, and biphenyl columns. In addition, different eluent compositions were used: both methanol and acetonitrile were combined with different aqueous phases with pH from 2.1 to 10.0 (formic acid, acetic acid, trifluoroacetic acid, formate, acetate, bicarbonate, and ammonia). The root mean square error (RMSE) of the test set predictions was 1.55 min for C18 reversed phase, 1.79 min for mixed-mode, 1.93 min for HILIC, and 1.56 min for biphenyl column. Additionally, MultiConditionRT can be applied to different gradient profiles with a general additive model-based calibration approach. The approach of MultiConditionRT was validated externally and internally with 356 and 151 compounds respectively, yielding an RMSE of 2.68 and 2.32 min. 324 and 84 of these compounds were not in the dataset used in the model development.

Machine Learning for Absolute Quantification of Unidentified Compounds in Non-Targeted LC/HRMS
Emma Palm, Anneli Kruve
Molecules 2022
DOI: 10.3390/molecules27031013
LC/ESI/HRMS is increasingly employed for monitoring chemical pollutants in water samples, with non-targeted analysis becoming more common. Unfortunately, due to the lack of analytical standards, non-targeted analysis is mostly qualitative. To remedy this, models have been developed to evaluate the response of compounds from their structure, which can then be used for quantification in non-targeted analysis. Still, these models rely on tentatively known structures while for most detected compounds, a list of structural candidates, or sometimes only exact mass and retention time are identified. In this study, a quantification approach was developed, where LC/ESI/HRMS descriptors are used for quantification of compounds even if the structure is unknown. The approach was developed based on 92 compounds analyzed in parallel in both positive and negative ESI mode with mobile phases at pH 2.7, 8.0, and 10.0. The developed approach was compared with two baseline approaches— one assuming equal response factors for all compounds and one using the response factor of the closest eluting standard. The former gave a mean prediction error of a factor of 29, while the latter gave a mean prediction error of a factor of 1300. In the machine learning-based quantification approach developed here, the corresponding prediction error was a factor of 10. Furthermore, the approach was validated by analyzing two blind samples containing 48 compounds spiked into tap water and ultrapure water. The obtained mean prediction error was lower than a factor of 6.0 for both samples. The errors were found to be comparable to approaches using structural information.

Sodium adduct formation with graph-based machine learning can aid structural elucidation in non-targeted LC/ESI/HRMS
Riccardo Costalunga, Sofja Tshepelevitsh, Helen Sepman, Meelis Kull, Anneli Kruve
Analytica Chimica Acta 2021
DOI: 10.1016/j.aca.2021.339402
Non-targeted screening with LC/ESI/HRMS aims to identify the structure of the detected compounds using their retention time, exact mass, and fragmentation pattern. Challenges remain in differentiating between isomeric compounds. One untapped possibility to facilitate identification of isomers relies on different ionic species formed in electrospray. In positive ESI mode, both protonated molecules and adducts can be formed; however, not all isomeric structures form the same ionic species. The complicated mechanism of adduct formation has hindered the use of this molecular characteristic in the structural elucidation in non-targeted screening. Here, we have studied the adduct formation for 94 small molecules with ion mobility spectra and compared collision cross-sections of the respective ions. Based on the results we developed a fast support vector machine classifier with polynomial kernels for accurately predicting the sodium adduct formation in ESI/HRMS. The model is trained on five independent data sets from different laboratories and uses the graph-based connectivity of functional groups and PubChem fingerprints to predict the sodium adduct formation in ESI/HRMS. The validation of the model showed an accuracy of 74.7% (balanced accuracy 70.0%) on a dataset from an independent laboratory, which was not used in the training of the model. Lastly, we applied the classification algorithm to the SusDat database by NORMAN network to evaluate the proportion of isomeric compounds that could be distinguished based on predicted sodium adduct formation. It was observed that sodium adduct formation probability can provide additional selectivity for about one quarter of the exact masses and, therefore, shows practical utility for structural assignment in non-targeted screening.
